Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We apply time-resolved photocurrent and differential electroreflectance spectroscopy to study the evolution of the internal field in a GaAs/AlGaAs superlattice after pulsed optical excitation at low temperature. The electric field dynamics is investigated by tracing the spectral position of the Wannier-Stark transitions as a function of delay time. We determine the electron sweep-out time, extract detailed information about the picosecond-time-scale drift of the charge carriers by comparing the measured data with the results of semi-classical self-consistent model calculations, and evaluate the two experimental techniques with respect to their ability to provide information about the carrier and field dynamics.
EN
Nanosecond pulsed technique was used to study and discriminate strong electric field induced effects in carrier transport in silicon doped GaAs/Al_{0.3}Ga_{0.7}As superlattices at room temperature. The experiment shows that the superlattice can serve as gain media to employ parametric phenomena for microwave amplification.
EN
We suggest a novel approach to detect broad band, 0.078-2.52 THz, electromagnetic radiation at room temperature using an asymmetrically-shaped bow-tie diode based on a modulation-doped GaAs/AlGaAs structure. We show that the voltage sensitivity in the range from 0.078 THz up to 0.8 THz has a plateau and its value is within 0.3-0.5 V/W. We consider the bow-tie diode design to increase the sensitivity of the device.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.