We use the Monte Carlo simulation method to investigate the influence of the signs of magnetocrystalline anisotropy constants and the magnetic dipole-dipole interactions on the zero field cooled-field cooled magnetization experiments and hysteresis curves of a system of magnetic nanoparticles. Positive first cubic anisotropy constant K₁ results in larger blocking temperatures and larger coercive fields of a system, while the second anisotropy constant K₂ is practically of negligible importance for the phenomena investigated. Magnetic dipole-dipole interactions are important only in the most dense systems of particles and their effects practically disappear for systems where the distance between the closest particles exceeds three particle diameters.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.