Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
PL
This paper introduces a new climatic wind tunnel laboratory, which is one of the laboratories of the Institute of Theoretical and Applied Mechanics (ITAM ) of the Academy of Science of the Czech Republic. The tunnel is used for fundamental research in civil engineering, architecture, and heritage care and in other fields where wind effects appear along with other factors. The paper includes essential information about the interior layout of the tunnel, descriptions of the principal parts of the tunnel which were designed taking into account both the optimal flow characteristics together with the description of some facilities serving for the simulation of a strong wind, rain, freeze and heat radiation, and the modelling of the atmospheric boundary layer. A design for a rectangular contraction nozzle, based on a parabolic profile and extending the capacity of the wind tunnel is presented.
PL
The influence of the ice accretion, angle of attack and Reynolds number on the flow field around iced cables of cablesupported bridges is not clearly understood. The Strouhal number is one of the most important parameters which is necessary for an analysis of the vortex excitation response of slender structures. This paper presents the method and results of wind tunnel investigations of the Strouhal number of stationary iced cable models of cable-supported bridges. The investigations were conducted in a climatic wind tunnel laboratory of the Czech Academy of Sciences in Telč. The methodology leading to the experimental icing of the inclined cable model in the climatic section of the laboratory was prepared. The shape of the ice on the cable was registered by photogrammetry and numerical evaluation. For the aerodynamic investigations, the iced cable model in a smaller scale was reproduced using a 3D printing procedure. The Strouhal number was determined within the range of the Reynolds number between 2.4·104 and 16.4·104, based on the dominant vortex shedding frequency measured in the flow behind the model. The model was orientated at three principal angles of wind attack for each of the Reynolds number values. In order to recognize the tunnel blockage effect, the Strouhal number of a smooth circular cylinder was tested. Strong agreement with the generally reported value in the subcritical Reynolds number range for a circular cylinder was obtained.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.