Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We study theoretically a nonresonant optical creation of a one-dimensional exciton-polariton condensate in a semiconductor microcavity. The polariton condensate is treated in the mean-field approach, taking into consideration an antitrapping potential created by the reservoir of noncondensed particles. Polariton condensates are excited by multiple lasers, with a combination of continuous wave and pulsed sources. The proposed pump-probe configuration leads to the realisation of various experimental schemes, e.g. optical trapping of a polariton condensate in real space. Moreover, it can be utilised for investigation of elementary excitations in the time domain when polariton condensates from two sources interact with each other.
EN
In this contribution the electronic structure of large In_{0.3}Ga_{0.7}As/GaAs quantum dots is studied theoretically by means of 8 band k · p modeling. These quantum dots constitute unique physical system due to the low strain limit of the Stranski-Krastanow growth mode resulting in relatively large physical volume and elongation of the quantum dots in [1-10] direction. As a result of these critical growth conditions the electronic structure is expected to be very sensitive to the nanostructure size, shape, and composition of the quantum dot as well as the accompanying wetting layer. Another peculiarity of investigated system is the confining potential which is rather shallow and weakened in comparison to standard quantum dots. It makes them very interesting in view of both fundamental study and potential applications. To reveal physical mechanisms determining the optical properties of the investigated system, the electronic structure, mainly the number of confined states, and the wave function extension as a function of both quantum dot size and geometry have been simulated numerically and the importance of electron-hole Coulomb interactions has been evaluated.
EN
We investigate double layer InAs/GaAs quantum dots grown in the Stransky-Krastanov mode by molecular beam epitaxy. The sample consists of two layers of InAs quantum dots separated by 10 nm thick GaAs layer, where the top quantum dot layer of an improved homogeneity is covered by an InGaAs cap. This configuration has allowed for the extension of the dots' emission to longer wavelengths. We probed the carrier transfer between the states confined in a double quantum well composed of InGaAs cap and the quantum dots wetting layer to the states in the quantum dots by means of photoluminescence excitation and photoreflectance spectroscopies. Efficient emission from quantum dots excited at the double quantum well ground state energy was observed. There is also presented a discussion on the carrier injection efficiency from the capping layer to the quantum dots.
4
Content available remote

GaAs-Based Quantum Well Exciton-Polaritons beyond 1 μm

64%
EN
Realization of the Bose-Einstein condensate can provide a way for creation of an inversion-free coherent light emitter with ultra-low threshold power. The currently considered solutions provide polaritonic emitters in a spectral range far below 1 μm limiting their application potential. Hereby, we present optical studies of InGaAs/GaAs based quantum well in a cavity structure exhibiting polaritonic eigenmodes from 5 to 160 K at a record wavelength exceeding 1 μm. The obtained Rabi splitting of 7 meV was almost constant with temperature, and the resulting coupling constant is close to the calculated QW exciton binding energy. This indicates the very strong coupling conditions explaining the observation of polaritons at temperatures where the exciton dissociation is already expected, and allows predicting that room temperature polaritons could still be formed in this kind of a system.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.