Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A multistage endoreversible Carnot heat engine system operating between a finite thermal capacity high-temperature fluid reservoir and an infinite thermal capacity low-temperature environment with a generalized heat transfer law [q ∝ ( Δ (T^{n}))^{m}] is investigated in this paper. Optimal control theory is applied to derive the continuous Hamilton-Jacobi-Bellman equations, which determine the optimal fluid temperature configurations for maximum power output under the conditions of fixed initial time and fixed initial temperature of the driving fluid. Based on the general optimization results, the analytical solution for the case with Newtonian heat transfer law [q ∝ Δ(T)] is further obtained. Since there are no analytical solutions for the other heat transfer laws, the continuous Hamilton-Jacobi-Bellman equations are discretized and the dynamic programming algorithm is adopted to obtain the complete numerical solutions of the optimization problem, and the relationships among the maximum power output of the system, the process period and the fluid temperature are discussed in detail. The results show that the optimal high-temperature fluid reservoir temperature for the maximum power output of the multistage heat engine system with Newtonian and linear phenomenological [q ∝ Δ (T^{-1})] heat transfer laws decrease exponentially and linearly with time, respectively, while those with the Dulong-Petit [q∝(Δ T)^{1.25}], radiative [q∝ Δ (T^4)] and [q∝(Δ(T^4))^{1.25}] heat transfer laws are different from the former two cases significantly.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.