Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Influence of strong electric field in wide frequency range (from DC to 35 GHz) on electrical resistance of thin La_{0.67}Ca_{0.33}MnO_3 polycrystalline manganite films was investigated in the range of (78÷300) K. Different behavior of resistance change vs. temperature was observed when pulsed DC electric field and microwaves were applied to the films. When pulsed DC electric field is applied the electric-field-induced resistance change ("electroresistance") of manganite film depended nearly monotonically on temperature. However, in microwave electric fields a non-monotonic character of the electroresistance temperature dependence was observed. The dependence of the electroresistance on quality of manganite films was observed in case of microwaves. The experimental findings are explained assuming different electrical current mechanisms in case of DC and microwave fields. The applied voltage drops mainly across the grains of polycrystalline film due to a presence of displacement currents in case of microwaves, whereas in DC case the voltage drop is across the grain boundaries.
EN
The magnetoresistance anisotropy of ultrathin La_{0.83}Sr_{0.17}Mn O_3 films deposited on NdGaO_3 substrate by metalorganic chemical vapour deposition technique was investigated. The electric-field-induced resistance change was studied up to electric fields of 10 kV/cm using ns duration electrical pulses. It was found that in ultrathin (< 10 nm) and thin (< 50 nm) films the origin of electric-field-induced resistance change is thermal. However, the films with thicknesses of about 20 nm, exhibit negative electric-field-induced resistance change, having a pure electronic nature. This effect is explained in terms of two-layer systems with imperfections located at the interface between the layers.
3
100%
EN
Epitaxial, textured, and polycrystalline La_{0.7}Ca_{0.3}Mn O_3 films, having about 150 nm thickness, were prepared by pulsed laser deposition techniques onto (110) NdGaO_3, MgO and lucalox substrates and investigated using 10 ns duration, 0.5 ns rise time electrical pulses having amplitude up to 500 V. Electroresistance of the films [R(E)-R(0)]/R(0) was investigated up to 80 kV/cm electric field strengths in temperatures ranging from 300 K to 4.2 K. Strong (up to 93%) negative electroresistance was obtained in polycrystalline La_{0.7}Ca_{0.3}MnO_3 films prepared on MgO and lucalox substrates. The epitaxial films grown on NdGaO_3 substrate demonstrated only a small resistance change due to Joule heating induced by a current pulse. It was concluded that electroresistance manifests itself in strongly inhomogeneous manganites films exhibiting a large number of structural imperfections producing ferromagnetic tunnel junction nets.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.