Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper we propose a microwave detector based on a AlGaAs/InGaAs/GaAs structure. Its operation relies on non-uniform carrier heating of the two-dimensional electron gas in the microwave electric fields which is a result of the asymmetric shape of the device fabricated on the base of pseudomorphic modulation doped AlGaAs/InGaAs/GaAs structure. The voltage sensitivity of the device at nitrogen temperature is 38 V/W for 10 GHz radiations and is higher compared to that of modulation doped AlGaAs/GaAs of the same configuration.
EN
The following peculiarities of electron transport in In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As quantum wells with δ-Si-doped In_{0.52}Al_{0.48}As barriers at high electric fields are discovered: (1) an enhancement of electron mobility by inserting the InAs phonon wall into the In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As quantum well, as well as increasing the InAs content in the modulation-doped In_{0.8}Ga_{0.2}As/In_{0.7}Al_{0.3}As heterostructure; (2) a large decrease in electron mobility and a change of electron density with increasing electric field in the range of 1-4 kV/cm; (3) a magnetic field dependence of the threshold electric field for intervalley scattering of electrons; and (4) microwave current oscillations in high electric fields.
EN
The results of experimental investigation of detection properties of the planar microwave diodes of various configuration on DC magnetic field are presented in this paper. The detection of microwave radiation was measured at 51 GHz, 72 GHz and 144 GHz frequencies. The magnetic field was applied in plane and perpendicularly to the plane of the diodes. The experiment was performed at room temperature. Dependence of the detected voltage of the diodes on the magnetic field had asymmetric character with respect to the polarity of the magnetic field. This fact allowed us to suspect the magnetic rectification influencing the detected voltage. Therefore, average value of the detected voltage with respect to the polarity of the applied magnetic field gives its dependence on the applied magnetic field.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.