Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
One of critical factor in determining the performance of solar cells is the morphology of the active layer. The drying process of the active layer prepared by inkjet printing technique plays a key role in obtaining high quality surface morphology. This paper reports the effect of thermal annealing on the morphology of printed active layer. The printed active layer is a blend of poly(3-octylthiophene-2,5-diyl) and (6,6)-phenyl C_{71} butyric acid methyl ester dissolved in a mixture of dichlorobenzene:mesitylene. The printed films were then annealed at three different temperatures, namely 120, 140, and 160C for 60 min to obtain the best performance of solar cells. It was found that the performance of solar cells strongly depends on the annealing temperature. The devices with the active layer annealed at 140C exhibits the highest performance with short circuit current density and open circuit voltage as high as 2.88 μA/cm^2 and 0.85 V, respectively. The effect of annealing on the properties of printed active layer will be discussed.
EN
This paper reports a study on the surface plasmon effect of Ag nanoplates on electroluminescent property of polymer light emitting diodes. The diode is a single layer light emitting device made of poly [9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl] (PEHF). 5 wt.% of Ag nanoplates were incorporated into the PEHF layer. The results showed that the electroluminescence intensity of the diodes is increased by 51.85%, compared with the device without the Ag nanoplates. The enhancement is due to the coupling process between the Ag surface plasmon with the emission light from the PEHF. The occurrence of the coupling process was proved firstly based on the fact that the exciton lifetime of the PEHF:Ag layer is shorter than that without Ag, as measured by time-resolved photoluminescence spectroscopy. Secondly, the PEHF photoluminescence peak at 425 nm is overlaping with the surface plasmon absorption peak of Ag nanoplates.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.