Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Sub-Terahertz Emission from Field-Effect Transistors

100%
EN
Several commercially available field-effect GaInAs-based transistors were studied as emitters of electromagnetic radiation. The emitters were tested either at room or at liquid helium temperature. To spectrally analyse emitted radiation, we applied three different experimental techniques: a spectrum analyser with antennas and mixers, a Michelson interferometer and a magnetic-field-tunable InSb detector. We show that the emission consists of a fundamental frequency of 11.5 GHz and its multiple harmonics spanning the emission band up to about 400 GHz. Analysis of the results allows us to suggest that the emission is caused by a Gunn effect and a high harmonics content is related to a pulse-like time dependence of the current.
EN
Silicon n-channel MOS transistors are a promising solution for sub-terahertz radiation detection. Their sensitivity is strongly related to the device construction. A type and thickness of the device substrate are key parameters affecting the responsivity, because the silicon substrate is a medium for the radiation propagation and the radiation energy loss, which degrades the detection efficiency. This work is aimed at analysis of the silicon substrate characteristics effect on operation of the MOSFETs as the terahertz radiation sensors. A manufacturing of the MOSFETs on three different substrate types including changing the substrate thickness is described in the paper. Next, the fabricated devices were exposed to THz radiation and their photoresponses were measured. It may be concluded that MOSFETs on silicon-on-insulator wafers with locally thinned substrates demonstrate the highest photoresponse. However, the experiments with the MOSFETs on high resisivity wafers give also promising results.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.