Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In our contribution we present the fabrication of Si_{1-x}Ge_x alloy by ion-implantation and millisecond flash lamp annealing. The 100 keV Ge ions at the fluence of 10×10^{16}, 5×10^{16}, and 3×10^{16} cm^{-2} were implanted into monocrystalline (100)-oriented Si wafers covered by 50 nm thermal oxide. In the consequence, the 50 nm amorphous Ge rich Si layers were obtained. The recrystallization of the implanted layers and the Si_{1-x}Ge_x alloying were accomplished by flash lamp annealing with the pulse duration of 20 ms. Flash lamp treatment at high energy densities leads to local melting of the Ge-rich silicon layer. Then the recrystallization takes place due to the millisecond range liquid phase epitaxy. Formation of the high quality monocrystalline Si_{1-x}Ge_x layer was confirmed by the μ-Raman spectroscopy, the Rutherford backscattering channeling and cross-sectional transmission electron microscopy investigation. The μ-Raman spectra reveal three phonon modes located at around 293, 404, and 432 cm^{-1} corresponding to the Ge-Ge, Si-Ge and Si-Si in the Si_{1-x}Ge_x alloy vibrational modes, respectively. Due to much higher carrier mobility in the Si_{1-x}Ge_x layers than in silicon such system can be used for the fabrication of advanced microelectronic devices.
EN
Different semiconductor nanocrystals synthesized in dielectrics on silicon are very interesting for applications in non-volatile memories and photovoltaics. In this paper we present an overview of microstructural and opto-electronic properties of different III-V quantum dots embedded in SiO_2 and Si_3N_4 made by sequential ion implantation and millisecond range flash lamp annealing. It is shown that within 20 ms post-implantation annealing high quality crystalline III-V quantum dots can be formed in different matrices. Formation of crystalline III-V quantum dots was confirmed by cross-section transmission electron microscopy, photoluminescence and μ-Raman spectroscopy. Flash lamp annealing is essentially a single-flash-single-wafer technique whose main attributes are the ease and control of processing over large wafer batches.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.