Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 64
|
issue 2
197-202
PL
Zdolność do rozpoznawania i zapamiętywania parametrów środowiska zewnętrznego oraz umiejętność wykorzystywania tej wiedzy stanowią niezwykle przydatny zestaw cech adaptacyjnych u zwierząt. Funkcja ta określana jest jako pamięć przestrzenna. Jej rozwój związany jest z ewolucyjnym wzrostem skomplikowania anatomicznego i funkcjonalnego mózgu i wykształceniem nowych struktur odpowiedzialnych za specyficzne aspekty pamięci. U ssaków centralną strukturą systemu odpowiedzialnego za pamięć przestrzenną jest hipokamp. Odpowiada on za indeksowanie i przywoływanie elementów, które formują spójną, trójwymiarową reprezentację przestrzenną (mapę kognitywną). Zarządza także procesami znajdowania części wspólnych pomiędzy podobnymi kontekstami lub też ich rozróżniania. W hipokampie znajdują się komórki miejsca: neurony generujące potencjały czynnościowe w specyficznych lokalizacjach. Kora środwęchowa stanowi główne źródło projekcji do tej struktury. Odbiera informację od innych obszarów i kieruje ją do hipokampa. W jej przyśrodkowej części znajdują się trzy rodzaje komórek o aktywności modulowanej przez informację przestrzenną. Komórki siatki aktywowane są w węzłach równomiernej heksagonalnej siatki pokrywającej całą dostępną przestrzeń. Neurony granicy reagują na fizyczne przeszkody, zaś komórki kierunku głowy rejestrują zmiany pozycji głowy zwierzęcia. Wspólnie te cztery rodzaje komórek modulowanych przestrzennie tworzą neurofizjologiczne podstawy pamięci przestrzennej u wszystkich ssaków. Ten układ jest również odpowiedzialny za skomplikowane formy pamięci epizodycznej u człowieka.
EN
The ability to recognize and remember the features of external environment and to utilize this knowledge is one of the most fascinating adaptive features in the animal kingdom. This phenomenon is commonly referred to as spatial memory. The development of such capability is fueled by evolutionary progress in the complexity of brain structure and function. This includes the emergence of specialized brain structures responsible for all aspects of spatial memory. In mammals the central structure involved in spatial memory is the hippocampus. This structure is believed to be responsible for indexing and retrieval of memory traces that form a coherent three dimensional spatial representation (cognitive map). It also orchestrates processes such as differentiating or finding common features between similar yet distinct contexts. Hippocampus harbors the place cells: neurons that respond to a particular location in the environment by firing action potentials. The entorhinal cortex is anatomically positioned as a gateway to the hippocampal formation. It gathers information from other brain areas and feeds it to hippocampus. In the medial part of entorhinal cortex several types of spatially modulated neurons can be found. The grid cells fire at the nodes of a hexagonal pattern as the animal traverses the environment, creating a lattice that can serve as metric for the generation of place fields. Border cells react to the physical boundaries of the environment, firing at the edge of impassable walls. The head direction cells react to the changes in the head position, firing preferentially at a specific horizontal angle. Together, the interactions within elements of this system form the neurophysiological foundation for spatial memory in all mammals. They are also responsible for complex episodic memory in humans
|
|
vol. 49
|
issue 4
877-889
EN
In this review we summarize the present status of our knowledge on the enzymes involved in the extracellular metabolism of nucleotides and the receptors involved in nucleotide signalling. We focus on the mechanism of the ATP and ADP signalling pathways in glioma C6, representative of the type of nonexcitable cells. In these cells, ATP acts on the P2Y2 receptor coupled to phospholipase C, whereas ADP on two distinct P2Y receptors: P2Y1 and P2Y12. The former is linked to phospholipase C and the latter is negatively coupled to adenylyl cyclase. The possible cross-talk between the ATP-, ADP- and adenosine-induced pathways, leading to simultaneous regulation of inositol 1,4,5-trisphosphate and cAMP mediated signalling, is discussed.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.