Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A standard technique of electroless gold deposition was modified by changing the composition of Ag-based activation solution. This allows preparation of two types of poly(ethyleneterephthalate) (PET) track etched membranes coated entirely with gold after 1, 5, and 24 h of reaction at 4°C. After dissolving the polymer template, gold nanotubes with outer diameter of 70-80 nm were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Reduction of p-nitrophenol to p-aminophenol by sodium borohydride was used to investigate the catalytic activity of as-prepared Au/PET membrane. All experiments were carried out for five consecutive cycles and rate constant of the pseudo-first-order reaction was calculated. It was found that Au/Ag/PET composites prepared after activation for 3 min in Ag-based solution (with potassium sodium tartrate as reducing agent) more effective catalyst (k=0.087 min^{-1}) was obtained when the Au/PET samples activated with ammonia silver nitrate solution (k=0.041 min^{-1}).
EN
Electroless deposition has been used to coat finely porous polyethylene terephthalate (PET) track-etched membranes with silver, forming silver nanotubes within the pores with inner and outer diameters of 60 and 100 nm. The sample's X-ray diffraction pattern shows a face-centered cubic crystalline phase of silver with the lattice constant 4.0838 nm. The average size of silver nanoclusters, as obtained from the scanning electron microscopy analysis is about 30 nm which is consistent with the X-ray diffraction results. The temperature dependent catalytic activity of prepared composites is demonstrated for two model reactions such as reduction of 4-nitrophenol (4-NP) and decomposition of hydrogen peroxide. Apparent constant rates and activation energy as well as reusability of catalysts were determined. The developed composite catalyst could be used consecutively for several runs without any damages for 4-NP reduction. For hydrogen peroxide reaction decomposition the reaction rate of the second cycle is reduced 2.4 times. Moreover, the second reuse reduced conversion of H₂O₂ to 54.7% suggests removal of active Ag centers during the first cycle of testing.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.