A theoretical model for calculation of equilibrium concentrations of isomeric butane molecule forms, and also the forms of hydrocarbons of the alkene series, is proposed. We considered the changes of internal rotational potential energy in respect of reaction coordinate, of rapid conversion of butane isomers from one form to another at room temperature. This is very important for better understanding of the nature of chemical reactions in butane, because the changes of internal rotational potential energy reflect conformational transitions of butane and changes of its chemical and physical properties. The presented model is based on Gribov's system of kinetic equations for isomer-isomer transitions. The canonical ensemble is used to calculate the room temperature probabilities of the rotoisomer conformational states as functions of dihedrial angle, and the obtained results are in good agreement with available ones. Also, in a sense of calculated lifetime of unstable rotoisomers (<10^{-10} s), our results are comparable with coupled cluster and density functional calculations on alkene derivatives.
Biomolecular recognition is an open scientific problem, which has been investigated in many theoretical and experimental aspects. In that sense, there are encouraging results within Resonant Recognition Model (RRM), based on the finding that there is a significant correlation between spectra of the numerical presentation of amino acids in the primary structure of proteins and their biological activity. It has been found through an extensive research that proteins with the same biological function have a common frequency in their numerical spectra. This frequency was found then to be a characteristic feature for protein biological function or interaction The RRM model proposes that the selectivity of protein interactions is based on resonant energy transfer between interacting biomolecules and that this energy, electromagnetic in its nature, is in the frequency range of 10^{13} to 10^{15} Hz, which incorporates infra-red (IR), visible and a small portion of the ultra-violet (UV) radiation. In this paper, the quantum mechanical basis of the RRM model will be investigated using the solution in the simplified framework of Hückel-like theory of molecular orbits.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.