We investigate the effect of magnetostatic interactions on the magnetization reversal process of equilateral triangular rings arranged on a hexagonal lattice. Inter-ring interactions originate as rings corners host domain-walls that produce an intense dipolar field; the effect of such interactions is studied by recording hysteresis loops for different magnetic field orientations. Rings magnetic configuration is probed via magnetic force microscopy and diffraction magneto-optic Kerr effect measurements. We observe that the effect of stray fields due to domain-walls competes with that of shape anisotropy, and that the former prevails when the magnetic field orientation is parallel to rings symmetry axes.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.