Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2017
|
vol. 131
|
issue 3
440-442
EN
The existence of defects in nanostructures has a significant influence on their mechanical properties. A nonlinear finite element model of single-walled carbon nanotube without and with atom vacancy defects is presented. The numerical efficient formulation for carbon nanotubes is discussed considering the geometry, together with a finite element discretization, including the atomic potential. The effective mechanical properties are evaluated based on the homogenization theory. The results for pristine and defective single-walled carbon nanotube are presented in the form of stress-strain curves. Vacancy defects noticeably reduce the failure stresses and failure strains.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.