Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A novel laccase was purified from the white rot fungus, Hohenbuehelia serotina, to investigate the applications of this laccase in the decoloration of various dyes. SDS-PAGE revealed a single band of this laccase corresponding to a molecular weight of approximately 57.8 kDa. The enzyme showed activity towards several substrates, the most sensitive of which was 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). The highest enzymatic activity using ABTS as a substrate was observed at pH 6.8 and 30°C. The enzyme activity was found to be significantly enhanced in the presence of Zn2+ ions and inhibited by Fe2+ ions. Moreover, SDS and β-mercaptoethanol were inhibitory, and inhibition by L-cysteine was observed while EDTA and DMSO had almost no inhibitory effect. The laccase could effectively decolorize seven different dyes within 30 minutes at 40°C.
EN
A novel antibacterial protein with a molecular mass of 44 kDa has been isolated from dried fruiting bodies of the wild mushroom Clitocybe sinopica. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed that the protein was composed of two subunits each with a molecular mass of 22 kDa. Its N-terminal amino-acid sequence, SVQATVNGDKML, has not been reported for other antimicrobial proteins. The purification protocol included ion exchange chromatography on DEAE-cellulose, CM-cellulose and Q-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The antibacterial protein was adsorbed on all three ion exchangers. The antimicrobial activity profile of the protein against tested bacterial and fungal strains disclosed that it possessed potent antibacterial activity against Agrobacterium rhizogenes, A. tumefaciens, A. vitis, Xanthomonas oryzae and X. malvacearum with a minimum inhibitory concentration mostly below 0.6 µM. However, it had no antibacterial activity against Pseudomonas batatae, Erwinia herbicola, Escherichia coli, and Staphylococcus aureus, and no antifungal activity against Setosphaeria turcica, Fusarium oxysporum, Verticillium dahliae, Bipolaris maydis, and B. sativum. The antibacterial antivity against A. tumefaciens was stable after exposure to 20-60°C for 30 min and to pH 4-9 for 1h.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.