Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This paper reports results of a study aimed at understanding the precipitation processes occurring during the annealing of two Al-Sc-Zr-based alloys with and without Mn prepared by powder metallurgy with subsequent hot extrusion at 350°C. Samples were isochronally annealed up to ≈ 570°C. Precipitation behaviour was studied by electrical resistometry and differential scanning calorimetry. Mechanical properties were monitored by microhardness HV1 measurements. Transmission electron microscopy examinations and X-ray diffraction of specimens quenched from temperatures of significant resistivity changes helped to identify the microstructural processes responsible for these changes. Fine (sub)grain structure develops and fine coherent Al_3Sc and/or Al_3(Sc,Zr) particles precipitate during extrusion in both alloys. The distinct changes in resistivity (at temperatures above ≈ 330°C) of the Al-Mn-Sc-Zr alloy are mainly caused by precipitation of Mn-containing particles. The easier diffusion of Mn atoms along the (sub)grain boundaries is responsible for the precipitation of the Al_6Mn and/or Al_6(Mn,Fe) particles at relatively lower temperatures compared to the temperature range of precipitation of these particles in the classical mould-cast Al-Mn-Sc-Zr alloys The apparent activation energy for precipitation of the Al_3Sc and Al_6Mn particles in the Al-Mn-Sc-Zr alloy was determined as (106 ± 10) kJ mol^{-1} and (152 ± 33) kJ mol^{-1}, respectively.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.