Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present combined X-ray powder diffraction and Mössbauer ^{119}Sn studies of polycrystalline compounds with a general formula Zn_xSn_yCr_zSe_4 (where x+y+z ≈3). The obtained single-phase compounds crystallize in the spinel cubic structure - Fd3m. Tin ions are found to occupy both tetrahedral and octahedral sublattices. On the contrary to the strong tetrahedral site preference energy of Sn, the presented data strongly suggest that the increase in lattice parameters with Sn doping is caused by Sn ions that incorporated into octahedral positions. A quadrupole and isomer shifts of ^{119}Sn in (SnSe_4)^{6-} and (SnSe_6)^{4-} are also reported.
EN
In this work, we employed the Mössbauer spectroscopy and X-ray powder diffraction in a study of point defect formation in intermetallic phases of the B2 structure of the Fe-Al system as a function of Al concentration. The results are compared with the concentrations of point defect determined from positron annihilation data. In the Mössbauer effect, two types of samples are investigated: Fe-Al alloys with few additives obtained by induction melting and Al-rich metallic powders produced by the self-decomposition method and intensive grinding of high energy in the electro-magneto-mechanical mill. We present the values of the ^{57}Fe isomer shift and quadrupole splitting for the components describing the point defect in the local environment of a Mössbauer nuclide. The concentration of the Fe vacancies and Fe atoms substituting Al (Fe-AS) are determined. The results showed that an increase in Al content causes an increase in vacancy and Fe-AS concentration.
EN
Seleno-spinels with nominal chemical composition Cu_{0.5}Fe_{0.5}Cr_2Se_4 and Cu_{0.2}Fe_{0.8}Cr_2Se_4 were prepared as polycrystalline samples using ceramic method. The assumed composition was verified by wavelength-dispersive X-ray fluorescence spectrometry. The X-ray analysis was carried out in order to make phase analysis and to compare its results with those obtained with the Mössbauer spectroscopy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.