Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
There is a significant number of data confirming that the maintenance of calcium homeostasis in a living cell is a complex, multiregulated process. Calcium efflux from excitable cells (i.e., neurons) occurs through two main systems - an electrochemically driven Na+/Ca2+ exchanger with a low Ca2+ affinity (K0.5 = 10-15 μM), and a plasmalemmal, specific Ca2+-ATPase, with a high Ca2+ affinity (K0.5 < 0.5-1 μM), whereas in nonexcitable cells (i.e., erythrocytes) the calcium pump is the sole system responsible for the extrusion of calcium ions. The plasma membrane Ca2+-ATPase (PMCA) is a ubiquitously expressed protein, and more than 26 transcripts of four PMCA genes are distributed in a tissue specific manner. Differences in the structure and localization of PMCA variants are thought to correlate with specific regulatory properties and may have consequences for proper cellular Ca2+ signaling. The regulatory mechanisms of calcium pump activity have been studied extensively, resulting in a new view of the functioning of this important molecule in the membranes.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.