We show how random matrix theory can be applied to develop new algorithms to extract dynamic factors from macroeconomic time series. In particular, we consider a limit where the number of random variables N and the number of consecutive time measurements T are large but the ratio N/T is fixed. In this regime the underlying random matrices are asymptotically equivalent to Free Random Variables (FRV).Application of these methods for macroeconomic indicators for Poland economy is also presented.
Non-symmetric rectangular correlation matrices occur in many problems in economics. We test the method of extracting statistically meaningful correlations between input and output variables of large dimensionality and build a toy model for artificially included correlations in large random time series.The results are then applied to analysis of polish macroeconomic data and can be used as an alternative to classical cointegration approach.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.