Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Zirconium (Zr) is a potential implant material due to its excellent biocompatibility and low elastic modulus for biomedical applications. Its poor bioactivity, however, limits its use as biomaterials. In this study, microarc oxidation which is a plasma-electrochemical based process was applied to produce oxide coatings on pure zirconium. The coating processes were conducted in different electrolytes containing sodium silicate and varying amounts of calcium acetate tetrahydrate (CA) for 30 min to investigate the effect of the introduction of CA into the electrolyte solution on the morphology and chemical composition of the fabricated coatings. It was found that the coatings consisted of monoclinic-ZrO₂ and tetragonal-ZrO₂ phases. The amount of the tetragonal-ZrO₂ phase increased with the increasing CA concentration in the electrolyte. The coating thickness and surface roughness showed a tendency to increase with the increasing CA concentration in the electrolyte. It was observed that the vicinity of plasma channels were Zr-rich, while their surroundings were rich in Si and Ca elements. The outer region of the coating was denser compared to inner region consisting of Zr-rich porous structure.
EN
The article was originally published on October 2014. In this paper "calcium acetate monohydrate" was used in electrolyte solution, however by mistake authors had written the name of the chemical as "calcium acetate tetrahydrate". The authors apologize for their error.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.