Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Open Chemistry
|
2010
|
vol. 8
|
issue 3
469-485
EN
The coordination chemistry of mercury is an extremelybroad field, as shown by a survey covering the crystallographic and structural data of over 550 examples. About 12% of those complexes exist as isomers and are summarised and classified in this review. Included are distortion (73%), polymerisation (20.6%), coordination number (3.2%) and ligand (3.2%) isomerism. These are discussed in terms of the coordination around the mercury atoms, and correlations are drawn between donor atoms, bond distances and bond angles. Distortion isomers, differing only by the degree of distortion in the Hg - L and L - Hg - L angles, are the most common. These isomers are discussed and compared with those found in the chemistry of zinc and cadmium. [...]
Open Chemistry
|
2011
|
vol. 9
|
issue 4
501-548
EN
This review covers almost 290 heterobinuclear Pt derivatives. When the heterometals (M) are non transition and the binuclear are found both with and without a metal to metal bond. Where M is a transition metal or actinide, only those with a metal-metal bond have been included here. There are thirteen non-transition metals (Sn, Hg, Ge, Sb, Tl, Zn, Pb, Cd, Na, K, Ga, Ca and In). The shortest Pt-M bond distance is 235.2(1) (Pt-Ge). There are eighteen transition metals (Fe, W, Rh, Re, Pd, Ag, Ir, Mo, Mn, Re, Co, Cu, Cr, Au, Ni, Ti, Ta and V). The shortest Pt-M bond distance is 249.5(2) pm (Pt-Cr). There is one example of an actinide, Pt-Th at 298.4(1) pm. The Pt atom has oxidation numbers 0, +2 and +4. The Pt coordination geometries include square planar (most common), trigonal bipyramidal, pseudo octahedral (Pt(IV)) and a few prevalently capped trigonal prismatic seven coordinate species. There are at least two types of isomerism distortion and polymerisation. Factors affecting bond lengths and angles are discussed and some ambiguities in coordination polyhedra are outlined. [...]
Open Chemistry
|
2011
|
vol. 9
|
issue 5
776-789
EN
This review covers crystallographic and structural data for almost fifty polymeric FeM complexes (M = transition Cu, Ag, Au, Mo, W, Mn, Co, Ni and Pt and lanthanide elements Sm, Er and Yb) where iron is involved in polymeric chains. The complexes are for the most part yellow or black, but there are complexes of brown, orange, red, purple, blue and green colour. The complexes crystallized in the monoclinic (by far prevails), triclinic, tetragonal, orthorhombic, trigonal, hexagonal and rhombohedral crystal classes. The iron atoms are found in oxidation states 0, +2 and +3, of which +3 by far prevails. The inner coordination spheres about the Fe(0) atom are tetrahedral (FeC4) or sandwiched (FeC10), Fe(II) atoms are six-coordinated, and Fe(III) are six or even seven-coordinated. The inner coordination about M atoms range from four- through six- to eight-coordinated. The shortest Fe-Fe, Fe-M (transition) and Fe-M (lanthanide) and M-M separations are: 8.08 Å, 3.033 Å for Fe-Cu, 3.010 Å for Fe-Yb and 2.505 Å for Mo-Mo.
4
Content available remote

Isomers in the chemistry of iron coordination compounds

63%
Open Chemistry
|
2010
|
vol. 8
|
issue 5
965-991
EN
The coordination chemistry of iron covers a wide field, as shown by a survey covering the crystallographic and structural data of almost one thousand and three hundred coordination complexes. About 6.7% of these complexes exist as isomers and are summarized in this review. Included are distortion (96.6%) and cis - trans (3.4%) isomers. These are discussed in terms of the coordination about the iron atom, bond length and interbond angles. Distortion isomers, differing only by degree of distortion in Fe-L, Fe-L-Fe and L-Fe-L parameters, are the most common. Iron is found in the oxidation states zero, +2 and +3 of which +3 is most common. The stereochemistry around iron centers are tetrahedral, five - coordinated (mostly trigonal - bipyramid) and six - coordinated. The most common ligands have O and N donor sites.
EN
This review covers almost two hundred and twenty heterobinuclear platinum compounds in which Pt⋯M separation is over 3.0 Å. The M is a transition metal (Cu, Ag, Au, Ti, V, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni and Pd). There is an example of a lanthanide, Yb and a actinide, U. The Pt atom has oxidation numbers 0, +2 and +4. The Pt coordination geometries include trigonal planar Pt(0); square planar Pt(II); trigonal bipyramidal, and pseudo octahedral Pt(IV), with the most frequent being square planar. The most common ligands for Pt are P and C donor atoms, as well as a chlorine atom. The Pt - Ag distance of 3.002(1) Å is the shortest found in this series. There are examples which contain two crystallographically independent molecules, which differ mostly by degree of distortion and even one unique example, which contains eight such molecules. These are examples of distortion isomerism. Factors affecting bond lengths and angles are discussed and some ambiguities in coordination polyhedral are outlined.
EN
This review classifies and analyzes over fifty heterohepta- and heterooctanuclear platinum clusters. There are eight types of metal combinations in heteroheptanuclear: Pt6M, Pt5M2, Pt4M3, Pt3M4, Pt2M5, PtM6, Pt3Hg2Ru2 and Pt2Os3Fe2. The seven metal atoms are in a wide variety of arrangements, with the most common being one in which the central M atom (mostly M(I)) is sandwiched by two M3 triangles. Another arrangement often found is an octahedron of M6 atoms asymmetrically capped by an M atom. The shortest Pt-M bond distances (non-transition and transition) are 2.326(1) Å (M = Ga) and 2.537(6) Å (M = Fe). The shortest Pt-Pt bond distance is 2.576(2) Å. In heterooctanuclear platinum clusters there are eight types of metal combinations: Pt6M2, Pt4M4, Pt3Ru5, Pt2M6, PtM7, Pt2W4Ni2, PtAu6Hg and PtAu5Hg2. From a structural point of view, the clusters are complex with bicapped octahedrons of eight metal atoms prevailing. The shortest Pt-M bond distances (non-transition and transition) are 2.651(3) Å (M = Hg) and 2.624(1) Å (M = Os). The shortest Pt-Pt bond distance is 2.622(1) Å. These values are somewhat longer than those in the heteroheptanuclear clusters. Several relationships between the structural parameters were found, and are discussed and compared with the smaller heterometallic platinum clusters
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.