The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions. [...]
Theoretical studies on the thermodynamic and kinetic properties of the reactions of scandium (I) ion with the sulfur-transfer reagent SCO via the C-O bond activation pathway have been carried out over the temperature range of 200-1200 K using the DFT/B3LYP method, general statistical thermodynamics, and Eyring transition state theory with Wigner correction. The relevant reactions include reaction 1 1Sc+ + SCO → 1IM1 → 1TS1 → 1IM2 (Step 1) → 1TS2 → 1IM3 → 1ScO+ + 1CS (Step 2), and reaction 2 3Sc+ + SCO → 3IM1 → CP → 1IM2 → 1TS2 → 1IM3 → 1ScO+ +1CS in which the spin multiplicity changes from the triplet state to the singlet state in the crossing region. It was concluded that the order of the equilibrium constants (K) and the reaction rate constants (k) are consistent with that of their corresponding exoergic energies, ΔE, and reaction barriers, respectively. Step 2 of reaction 1 is both thermodynamically and kinetically favored over the whole temperature range. Moreover, both Reaction 1 and reaction 2 are exothermic and spontaneous processes in which their entropy increases, and the magnitudes of their thermodynamic values all decrease with increasing temperature. [...]
Both a molecule dynamic study and a combined quantum mechanics and molecule mechanics (QM/MM) study on Glycinamide ribonucleotide transformylase (GAR Tfase) catalytic mechanism are presented. The results indicate a direct one-carbon unit transfer process but not a stepwise mechanism in this reaction. The residues near the active center can fix the cofactor (N10-formyltetrahydrofolate) and GAR in proper relative positions by a H-bond network. The transition state and the minimum energy pathway are located on the potential energy surface. After all the residues (including H2O molecules) are removed from the system the activation energy has increased from 145.1 kJ/mol to 243.3 kJ/mol, and the formly transfer reaction is very hard to achieve. The interactions between coenzyme, GAR and residues near the reactive center are discussed as well.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.