Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

The SIRS Model of Epidemic Spreading in Virtual Society

100%
EN
The phenomenon of epidemic spreading in a real social network is described and investigated numerically. On the basis of data concerning amount of time devoted daily to social interactions, the influence of human activity on spreading process is investigated in the frame of SIRS model. It was found that the activity of an individual is positively correlated with its connectivity and the relation has power law form. The influence of control measures on the spreading process is investigated as a function of initial conditions. The cost-effectiveness of mass immunizations campaigns and target vaccinations is compared. It was found that the form of activity distribution has significant influence on the spreading phenomena in the network.
EN
The SbSI/Sb_2S_3 single heterostructures as well as Sb_2S_3/SbSI/Sb_2S_3 and SbSI/Sb_2S_3/SbSI double heterostructures have been produced by applying CO_2 laser treatment of p-type SbSI single crystals. The current-voltage and transient characteristics of these heterostructures have been measured in temperatures below and above the SbSI single crystal Curie temperature (T_{c} = 293 K). The results have been fitted with appropriate theoretical formulae to determine the following types of the investigated heterojunctions: P-p SbSI/Sb_2S_3, p-P-p Sb_2S_3/SbSI/Sb_2S_3 and P-p-P SbSI/Sb_2S_3/SbSI. Influence of the illumination on electrical properties of SbSI/Sb_2S_3 single and double heterostructures has been reported. Fabricated new structures may be potentially applicable in electronics and optoelectronics as a new type of metal-ferroelectric-semiconductor devices.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.