Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 33
|
issue 4
595-602
EN
The aim of this study was to determine the solubility of CO2 in perfluorodecalin (PFD) which is frequently used as efficient liquid carrier of respiratory gases in bioprocess engineering. The application of perfluorinated liquid in a microsystem has been presented. Gas-liquid mass transfer during Taylor (slug) flow in a microchannel of circular cross section 0.4 mm in diameter has been investigated. A physicochemical system of the absorption of CO2 from the CO2/N2 mixture in perfluorodecalin has been applied. The Henry’s law constants have been found according to two theoretical approaches: physical (H = 1.22·10-3 mol/m3Pa) or chemical (H = 1.26·10-3 mol/m3Pa) absorption. We are hypothesising that the gas-liquid microchannel system is applicable to determine the solubility of respiratory gases in perfluorinated liquids.
EN
Gas-liquid microreactors find an increasing range of applications both in production, and for chemical analysis. The most often employed flow regime in these microreactors is Taylor flow. The rate of absorption of gases in liquids depends on gas-side and liquid-side resistances. There are several publications about liquid-side mass transfer coefficients in Taylor flow, but the data about gas-side mass transfer coefficients are practically non existent. We analysed the problem of gas-side mass transfer resistance in Taylor flow and determined conditions, in which it may influence the overall mass transfer rate. Investigations were performed using numerical simulations. The influence of the gas diffusivity, gas viscosity, channel diameter, bubble length and gas bubble velocity has been determined. It was found that in some case the mass transfer resistances in both phases are comparable and the gas-side resistance may be significant. In such cases, neglecting the gas-side coefficient may lead to errors in the experimental data interpretation.
3
Content available remote

Harvesting Energy and Hydrogen from Microbes

81%
EN
This article presents a critical mini-review of research conducted on bioelectrochemical reactors with emphasis placed on microbial fuel cells (MFC) and microbial electrolysis cells (MEC). The principle of operation and typical constructions of MFCs and MECs were presented. The types of anodes and cathodes, ion-selective membranes and microorganisms used were discussed along with their limitations.
|
|
vol. 33
|
issue 3
369-384
EN
The pressure drop in microreactors for the gas - liquid Taylor flow was measured for 4 different microreactor geometries and 3 different gas - liquid systems. The results have been compared with the existing literature correlations. A selection of the best correlations has been made.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.