Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present first-principles studies of the zero field spin splitting of energy bands in typical III-V semiconductors. Our calculations reveal that the strain induces linear-k spin splitting of the conduction band in theΓ point, which is linear in strain, and determine the magnitude of the so-called acoustic phonon constant that characterizes the magnitude of the spin splitting. In addition, we show that optical phonons lead to spin-flip processes and we present quantitative results for the spin-phonon deformation potentials in GaAs. Most importantly, the calculations show that the linear-k spin splitting can be resonantly enhanced when bands cross in a particular point of the Brillouin zone. This resonant enhancement of the bulk inversion asymmetry coupling constant by more than one order of magnitude was observed in both valence and conduction bands and can be steered by the application of the external stress. This allows tailoring of the spin relaxation and spin precession of conduction electrons in nanostructures to a much larger extent than was hitherto assumed.
2
100%
EN
We present theoretical studies of the linear-k strain induced spin splitting of the conduction band in the zinc-blende semiconductors. The studies are based on ab initio calculations performed within the density functional theory with non-scalar relativistic effects fully taken into account. This permits one to construct effective Hamiltonian for the strain induced linear-k spin splitting of the zinc-blende semiconductors. This Hamiltonian reproduces fully the structure of the strain induced linear-k spin splitting and generalizes previously introduced and commonly used effective Hamiltonian.
EN
We present first-principles studies of the zero field spin splitting of conduction band in [110] strained GaAs that determine spin lifetimes in semiconductors. Our calculations reveal strong anisotropy of the linear-k spin splitting in the (110) plane of the Brillouin zone and very minor in the (001) plane. This provides a qualitative understanding of the difference in the spin lifetimes in the GaAs/AlAs heterostructures grown along [100] and [110] crystallographic directions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.