Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Using full-potential local-orbital minimum-basis method within density functional theory, we study the phase transition, electronic and magnetic properties of CsN and RbN alloys under external pressure. Concerning the phase transition, we consider three possible crystal structures, including caesium chloride (CsCl), rock salt (RS) and zinc blende (ZB) ones. Calculations of enthalpy exhibit that a pressure-induced phase transition occurs between the three structures, and the phase transitions are difficult to be distinguished under ambient condition (P=0 GPa). As the further increase of pressure, they can be specified clearly. In addition, the electronic calculations indicate that both alloys are half-metallic ferromagnets with a total magnetic moment of 2.000 μ_{B}, which is promising for fabricating spin injection devices. Finally, we discuss the electronic and magnetic properties of CsN and RbN under external pressure. A pressure-induced delocalized electronic states and magnetic phase transition are observed in RbN and CsN alloys.
EN
Using the spin-polarized relativistic Korringa-Kohn-Rostoker method, we study the electronic and magnetic properties of Fe₂NiAs compound with the Hg₂CuTi structure. Electronic calculations reveal the d-d orbital hybridization taking an important role in the compound. The calculated magnetic moments, which contain the spin and orbital moments, are primarily carried by Fe atoms located in A and B sites. The orbital moment of Fe₂NiAs system is rather small due to the cause of orbital quenching, implying a weak spin-orbit coupling. Simultaneously, we also study the influence of lattice constant on the magnetic moment, it is found that both spin and orbital moments are sensitive to the changes of lattice constants, i.e., the moments become larger as the expansion of lattice constant, indicating the enhancement of spin-orbit coupling effect. In addition, we investigate the magnetic interactions between the constituents to obtain the Heisenberg exchange coupling parameters. It is noted that the interactions are dominated by a strong exchange between Fe atoms. Finally, we acquire the Curie temperatures of Fe₂NiAs compound under different lattice constants by using mean field approximation.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.