Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Crack free GaInN/AlInN multiple quantum wells were grown by rf plasma-assisted molecular beam epitaxy on (0001) GaN/sapphire substrates. The strain-engineering concept was applied to eliminate cracking effect for growth of intersubband structures on GaN. Indium contained ternary compounds of barrier and well layers are contrary strained to the substrate material. A series of crack free GaInN/AlInN intersubband structures on (0001) GaN was fabricated and investigated. The assumed composition and layered structure were confirmed by room temperature photoluminescence and X-ray diffraction measurements. The intersubband measurements were done in multipass waveguide geometry by applying direct intersubband absorption and photoinduced intersubband absorption measurements. The optimized structure design contains forty periods of Si-doped GaInN/AlInN quantum wells and exhibits strong intersubband absorption.
EN
Thanks to their large conduction band offset (~1.8 eV for the GaN/AlN system) and subpicosecond intersubband scattering rates, III-nitride heterostructures in the form of quantum wells or quantum dots are excellent candidates for high-speed unipolar devices operating at optical-fiber telecommunication wavelengths, and relying on the quantum confinement of electrons. In this work, we present the plasma-assisted molecular-beam epitaxial growth of quantum well infrared photodetector structures. The growth of Si-doped GaN/AlN multiple quantum well structures is optimized by controlling substrate temperature, metal excess and growth interruptions. Structural characterization confirms a reduction of the interface roughness to the monolayer scale. P-polarized intersubband absorption peaks covering the 1.33-1.91μm wavelength range are measured on samples with quantum well thickness varying from 1 to 2.5 nm. Complete intersubband photodetectors have been grown on conductive AlGaN claddings, the Al mole fraction of the cladding matching the average Al content of the active region. Photovoltage measurements reveal a narrow (~90 meV) detection peak at 1.39μm at room temperature.
EN
GaInN/AlInN multiple quantum wells were grown by RF plasma-assisted molecular beam epitaxy on (0001) GaN/sapphire substrates. The strain-engineering concept was applied to eliminate cracking effect and to improve optical parameters of intersubband structures grown on GaN substrates. The high quality intersubband structures were fabricated and investigated as an active region for applications in high-speed devices at telecommunication wavelengths. We observed the significant enhancement of intersubband absorption with an increase in the barrier thickness. We attribute this effect to the better localization of the second electron level in the quantum well. The strong absorption is very important on the way to intersubband devices designed for high-speed operation. The experimental results were compared with theoretical calculations which were performed within the electron effective mass approximation. A good agreement between experimental data and theoretical calculations was observed for the investigated samples.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.