Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The surface modified Strychnos potatorum seeds (SMSP), an agricultural waste has been developed into an effective adsorbent for the removal of Zn(II) ions from aqueous environment. The Freundlich model provided a better fit with the experimental data than the Langmuir model as revealed by a high coefficient of determination values and low error values. The kinetics data fitted well into the pseudo-second order model with the coefficient of determination values greater than 0.99. The influence of particle diffusion and film diffusion in the adsorption process was tested by fitting the experimental data with intraparticle diffusion, Boyd kinetic and Shrinking core models. Desorption experiments were conducted to explore the feasibility of regenerating the spent adsorbent and the adsorbed Zn(II) ions from spent SMSP was desorbed using 0.3 M HCl with the efficiency of 93.58%. The results of the present study indicates that the SMSP can be successfully employed for the removal of Zn(II) ions from aqueous environment.
EN
This paper reports the application of poly(azomethinethioamide) (PATA) resin having the pendent chlorobenzylidine ring for the removal of heavy metal ions such as Zn(II) and Ni(II) ions from the aqueous solutions by adsorption technology. Kinetic, equilibrium and thermodynamic models for Zn(II) and Ni(II) ions adsorption were applied by considering the effect of contact time, initial metal ion concentration and temperature data, respectively. The adsorption influencing parameters for the maximum removal of metal ions were optimized. Adsorption kinetic results followed the pseudo-second order kinetic model based on the correlation coefficient (R2) values and closed approach of experimental and calculated equilibrium adsorption capacity values. The removal mechanism of metal ions by PATA was explained with the Boyd kinetic model, Weber and Morris intraparticle diffusion model and Shrinking Core Model (SCM). Adsorption equilibrium results followed the Freundlich model based on the R2 values and error functions. The maximum monolayer adsorption capacity of PATA for Zn(II) and Ni(II) ions removal were found to be 105.4 mg/g and 97.3 mg/g, respectively. Thermodynamic study showed the adsorption process was feasible, spontaneous, and exothermic in nature.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.