Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2011
|
vol. 9
|
issue 6
1488-1492
EN
First-principles calculations of Na2Ti3O7 have been carried out with density-functional theory (DFT) and ultrasoft pseudopotentials. The electronic structure and bonding properties in layered Na2Ti3O7 have been studied through calculating band structure, density of states, electron density, electron density difference and Mulliken bond populations. The calculated results reveal that Na2Ti3O7 is a semiconductor with an indirect gap and exhibits both ionic and covalent characters. The stability of the (Ti3O7)2− layers is attributed to the covalent bonding of strong interactions between O 2p and Ti 3d orbitals. Furthermore, the O atoms located in the innerlayers interact more strongly with the neighboring Ti atoms than those in the interlayer regions. The ion-exchange property is due to the ionic bonding between the Na+ and (Ti3O7)2− layers, which can stabilize the interlayers of layered Na2Ti3O7 structure.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.