Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics

100%
EN
A polycrystalline sample, Ba3Sr2DyTi3V7O30, with tungsten bronze structure was prepared by a mixed-oxide method at high temperature (950°C). Preliminary structural analysis of the compound showed an orthorhombic crystal structure at room temperature. Surface morphology of the compound was studied by scanning electron microscopy. The dielectric anomaly at 321°C may be attributed to the ferro-paraelectric phase transitions. This was also confirmed from the appearance of a hysteresis loop. The nature of variation of the ac conductivity and value of activation energy at different temperature regions, suggest that the conduction process is of mixed-type (i.e., ionic-polaronic and space charge generated from the oxygen ion vacancies).
EN
Polycrystalline samples of Ba4SrRTi3V7O30 (R=Sm and Dy), members of the tungsten-bronze family, were prepared using a high-temperature, solid-state reaction technique and studied their electrical properties (using complex impedance spectroscopy) in a wide range of temperature (31–500°C) and frequency (1 kHz-1 MHz). Preliminary structural (XRD) analyses of these compounds show the formation of single-phase, orthorhombic structures at room temperature. The scanning electron micrographs (SEM) provided information on the quality of the samples and uniform distribution of grains over the entire surface of the samples. Detailed studies of the dielectric properties suggest that they have undergone ferroelectric-paraelectric phase transition well above the room temperatures (i.e., 432 and 355°C for R= Sm and Dy, respectively, at frequency 100 kHz). Measurements of electrical conductivity (ac and dc) as a function of temperature suggest that the compounds have semiconducting properties much above the room temperature, with negative temperature coefficient of resistance (NTCR) behavior. The existence of ferroelectricity in these compounds was confirmed from a polarization study.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.