Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Virus-like particles as vaccine

100%
EN
This review presents data on commercial and experimental virus-like particle (VLP) vaccines, including description of VLP vaccines against influenza. Virus-like particles are multimeric, sometimes multiprotein nanostructures assembled from viral structural proteins and are devoid of any genetic material. VLPs present repetitive high-density displays of viral surface proteins. Importantly, they contain functional viral proteins responsible for cell penetration by the virus, ensuring efficient cell entry and thus tissue-specific targeting, determined by the origin of the virus. The foremost application of VLPs is in vaccinology, where they provide delivery systems that combine good safety profiles with strong immunogenicity and constitute a safe alternative to inactivated infectious viruses. These stable and versatile nanoparticles display excellent adjuvant properties capable of inducing innate and cognate immune responses. They present both, high-density B-cell epitopes, for antibody production and intracellular T- cell epitopes, thus inducing, respectively, potent humoral and cellular immune responses. Uptake of VLPs by antigen-presenting cells leads to efficient immune responses resulting in control of pathogenic microorganisms.
EN
The majority of proteins are unable to translocate into the cell interior. Hence for peptide- and protein-based therapeutics a direct intracytoplasmic delivery with the aid of transducing agents is an attractive approach. We wanted to deliver to the cell interior a putatively cytotoxic protein VPg. Protein transduction was achieved in vitro with three different commercial products. However, in our hands, delivery of various control proteins without known deleterious effects, as well as of protein VPg, always induced cell death. Finally, we used a novel transducing peptide Wr-T, which was not toxic to cultured cells, even in a quite large range of concentrations. Most importantly, control protein delivered to cells in culture did not display any toxicity while VPg protein exerted a strong cytotoxic effect. These data show that results obtained with cell-penetrating agents should be interpreted with caution.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.