Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the paper we present the results of investigating the effective group birefringence of photonic crystal fiber, partially infiltrated with 6CHBT liquid crystal mixture, which is a chemical abbreviation for 4-(trans-4-n-hexylcyclohexyl)isothiocyanatobenzene. We also introduce a novel method of group birefringence measurement based on phenomenon of depolarization of partially coherent light in birefringent media. We use Mueller-Stokes matrix formalism extended by additional depolarization matrix, which gives us possibility to calculate degree of polarization fluctuations of the light propagating in the liquid-crystal infiltrated microstructured optical fibres. We conducted the research for green and red semiconductor laser diodes. The results may contribute in construction of tunable photonic liquid crystal fibers depolarizer. Additionally, we have controlled birefringence of the photonic liquid crystal fibers by external electric field. These research may lead to designing a new type of fiber optic depolarizer based on photonic liquid crystal fibers.
EN
In the paper we present results of the research on polarization mode dispersion changes inside the polarimetric optical fiber sensors based on highly birefringent optical fibers embedded into composite materials with different angular orientations of the optical axes. Based on measurements made for different types of highly birefringent optical fiber sensors we have shown that strain sensitivities after lamination process are different in comparison to the data obtained before lamination. Our results indicate that polarization mode dispersion in side-hole highly birefringent fibers under axial stress strongly depends on fiber orientation in the composite material suggesting that orientation of the polarization axes of the highly birefringent fiber can be responsible for behavior of the fiber inside the composite material.
3
Content available remote

Photonic Liquid Crystal Fibers with Polymers

42%
EN
Photonic liquid crystal fibers with polymers constitute a new solution based on liquid crystals and microstructured polymer optical fibers opening up new areas in innovative sensing and photonic devices applications. Compared with their silica-based microstructured fibers, it is easier to fabricate exotic microstructured polymer optical fibers by extrusion or drilling at low temperature; their nonlinearity is potentially stronger, the range of available polymers that may be drawn is more diverse and the biocompatibility of polymers is often better. Liquid crystals due to their attractive properties i.e., the high birefringence, high electro-optic and thermo-optic effects are a very good candidate for microstructured polymer optical fiber infiltration to obtain tunable all-in-fiber innovative photonic devices. The paper will discuss basic properties and possible applications of the polymer photonic liquid crystal fibers that will arise from their high optical tunability with external and internal factors. Current research effort is directed towards two main solutions: photonic crystal fibers and microstructured polymer optical fiber-based structures, both infiltrated with liquid crystals of tailored optical properties.
EN
Composite structures are made of two or more components with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing optical fiber sensors into the composite material. These sensors can demonstrate stress distribution inside tested material influenced by external tensions. Two types of the optical fiber sensors are used as the 3D structure. One of them is based on application of fiber Bragg grating inside the core of the fiber. Longitudinal stress changes parameters of the Bragg grating and simultaneously, spectral characteristics of the light transmitted through the fiber. The second one is based on application of highly birefringent fibers which, under external stress, introduce polarization changes of the output light.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.