Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In the paper, the results of technological investigations on planar optical waveguides based on high band gap oxide semiconductors were presented. Investigations concerned the technologies of depositing very thin layers of: zinc oxide ZnO, titanium dioxide TiO_2 and tin dioxide SnO_2 on substrates of quartz glass plates. There were investigated both morphological structures of the produced layers and their optical properties. The paper also presents investigations on the technology of input-output light systems in the Bragg grating structures.
EN
We report fabrication and characterization of ultrathin NbN and NbTiN films designed for superconducting photodetectors. Our NbN and NbTiN films were deposited on Al_2O_3 and Si single-crystal wafers by a high-temperature, reactive magnetron sputtering method and, subsequently, annealed at 1000°C. The best, 18 nm thick NbN films deposited on sapphire exhibited the critical temperature of 15.0 K and the critical current density as high as ≈ 8 × 10^6 A/cm^2 at 4.8 K.
EN
Electrical properties of RF magnetron sputtered p-NiO films were characterized after fabrication and after gamma irradiations using ^{137}Cs and ^{60}Co sources. Electrical parameters are obtained from the Hall measurements, impedance spectroscopy and C-V measurement of n-Si/p-NiO junction diodes. The results show that resistivity of the NiO film is gradually increased following after sequential irradiation processes because of the decrease in holes' concentration. Hole concentration of a NiO film decreases from the original value of 4.36 × 10^{16} cm^{-3} to 2.86 × 10^{16} cm^{-3} after ^{137}Cs γ irradiation with doses of 10 Gy. In the case of γ irradiation from ^{60}Co source, hole concentration of the film decreases from 6.3 × 10^{16}/cm^3 to 4.1 × 10^{16}/cm^3 and to 2.9 × 10^{16}/cm^3 after successive expositions with a dose of 20 Gy.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.