Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We studied the dynamics of the flux jumps in type II superconductors assuming this dynamics to be determined by magnetic diffusion. The conductivity of the sample during the jump was described by the flux flow conductivity, which depends on local magnetic field. We solved this problem numerically for an infinite slab sample. We assumed that superconducting sample was fully penetrated by the magnetic flux at the beginning and that the local induction of the magnetic field, in the whole sample, was equal to B_0. Then, the external magnetic field was increased by a value of ΔB_{a} and in the external magnetic field of B_0 + ΔB_{a} flux jump occurred. In our simulations we used the parameters characteristic of a conventional NbTi superconductor at 4.2 K. In particular, we studied the influence of the parameter B_0 on the flux jumps' dynamics. We have found that this parameter strongly influences initial stage of the diffusion process. With increasing B_0, the time during which flux front of the avalanche reaches the center of the sample decreases. The results of numerical simulations were compared with experiments.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.