The aim of this work is the substitution of the bovine bone by the natural phosphate from Djebelel-Onk (Tébessa, East of Algeria). We prepared two composites (bone/Al₂O₃ and natural phosphate/Al₂O₃) by reaction sintering. Different experimental techniques, including density, porosity, X-rays diffraction, and SEM techniques, were used to analyze the formation and transformation of phases at different temperatures. From the X-ray diffraction patterns, we put in evidence the formation of several phases. Through these results, we lighted the possibility of preparing bioceramics from natural phosphate (bone and natural phosphate). The presence of the different materials was confirmed by the micrographic observations.
Thermal reactions and sintering behavior of kaolin DD3 (Djebel Debbagh, Algeria) and CaO mixtures to obtain dense anorthite ceramics were investigated. Mixed powders were uniaxially pressed and fired between 850 and 1150°C. Firing the pressed specimens yielded a dense anorthite ceramics. The sintered density increased with increase of CaO content and reached the maximum value of 2.57 g/cm³ for the composition containing 10 wt% CaO and fired at 1150°C. Their coefficient of linear expansion of the sintered samples at 1100°C decreases with the addition of CaO. X-ray diffraction experiments carried out on the samples containing varied amount of CaO and fired at the temperatures higher than 1000°C for 2 h showed the presence of only anorthite phase.
The kinetics of spinel (Al-Si) crystallization from Algerian halloysite (DD1) was investigated using differential thermal analysis. Experiments were carried out on samples between room temperature and 1400°C with constant heating rate from 2 to 20°C min¯¹. The activation energies measured from isothermal and non-isothermal treatments were 1054.85 and 1140 kJ mol¯¹, respectively, for the spinel (Al-Si) formation. The Avrami constant n obtained by the Ligero method and the m parameter obtained by the Matusita method were about 2 for spinel crystallization. This value indicates that the crystallization mechanism of Al-Si spinel phase proceeds by bulk nucleation of the phase formation with a constant number of nuclei and that the three-dimensional growth of crystals is controlled by diffusion.
In the present study, the kinetics of meta-kaolinite (Al₂O₃·2SiO₂) formation from Algerian Tamazarte kaolin was investigated by using differential thermal analysis. The differential thermal analysis and the thermogravimetric experiments were carried out on samples between room temperature and 1400°C, at heating rates from 10 to 40°C min¯¹. X-ray diffraction was used to identify the phases present in the samples. The activation energies measured by differential thermal analysis from isothermal and non-isothermal treatments using Johnson-Mehl-Avrami methods with Ligero approximation and using Kissinger-Akahira-Sunose methods were around 145 and 159 kJ/mol, respectively. The Avrami parameter n which indicates the growth morphology parameters were found to be almost equal to 1.60, using non-isothermal treatments, and equal to 1.47 using isothermal treatments. The numerical factor which depends on the dimensionality of crystal growth was 1.60 obtained using Matusita et al. equation. The frequency factor calculated using the isothermal treatment is equal to 1.173× 10⁷ s¯¹. Analysis of the results have shown that bulk nucleation was dominant during kaolinite transformation, followed by three-dimensional growth of meta-kaolinite with polyhedron-like morphology, controlled by diffusion from a constant number of nuclei.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.