Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Yttrium oxide (Y₂O₃) is the most familiar yttrium compound, which is popularly known as host for ion doping of other rare earth elements. Bismuth ion (Bi³⁺) is well known as an activator and sensitizer in several particular phosphors. Zinc oxide (ZnO) nanomaterial, having a wide band gap, is one of the promising candidates for general illumination applications due to its high optical transparency and color tenability bismuth (Bi) and zinc (Zn) co-doped Y₂O₃ samples are synthesized by simple precipitation techniques like solvothermal and wet chemical methods. The prepared samples were characterized using X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectra, ultraviolet-visible absorbance spectroscopy and photoluminescence spectrophotometry. Ultraviolet-visible absorption studies showed absorption only around 340 nm whereas photoluminescence shows peaks around 500 nm, 680 nm, and 1020 nm for Bi and Zn co-doped Y₂O₃. The photoluminescence spectrum shows emission in blue region (500 nm) due to Zn dopant and red and near infrared region (680 and 1020 nm) due to Bi dopant. This is a new material which can effectively work as an efficient and cheap red phosphor.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.