Thermal decomposition behavior of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate (BNPM) has been studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20°C min¯¹. Non-isothermal studies of BNPM have revealed that the decomposition occurs in three stages involving dehydration and decomposition. The values of effective activation energy (E_{a}), pre-exponential factor (A) of each stage of thermal decomposition for all heating rates were calculated by model free methods: Arrhenius, Flynn-Wall, Friedman, Kissinger and Kim-Park method. A significant variation of effective activation energy (E_{a}) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and E_{a} values was well established (compensation effect). Dehydration stage was governed by the Avrami-Erofeev model (A2) and decomposition stages were governed by the Avrami-Erofeev model (A4).
The thermal decomposition kinetics of melaminium bis(trichloroacetate) dihydrate (MTCA) has been studied by thermogravimetry and derivative thermogravimetry techniques using non-isothermal experiments at three different heating rates 10, 15, and 20°C min^{-1}. Non-isothermal studies of MTCA revealed that the decomposition occurs in three stages involving dehydration and decomposition. The apparent activation energy (E_{a}) and the pre-exponential factor (ln A) of each stage of thermal decomposition at various linear heating rates are calculated using Flynn-Wall, Friedman, Kissinger, and Kim-Park method. A significant variation of effective activation energy (E_{a}) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and E_{a} values is well established (compensation effect). Isothermal kinetics of thermal decomposition of MTCA was found to obey Avrami-Erofeev's (A4) and power law (P3) equations. In addition to the above, mechanical properties have been estimated by Vicker's microhardness test for the grown crystal.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.