Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In most neuron models the values of maximal conductances of membrane ionic currents are fixed. In our paper we investigate spiking activity of the neuron model activated tonically by NMDA synapse, when the membrane ionic currents are dynamically dependent on calcium concentration, as in a model by Abbott and coauthors (1993). A spiking neuron model (in Matlab/Simulink environment) is based on the properties of lamprey spinal neurons. The basic neuron is a one-compartment model with voltage-gated Na+, K+, Ca2+, KCa+ channels. The Na+ and K+ currents are described with the dynamic equations of Hodkin-Huxley model (Hodgkin and Huxley 1952). The Ca2+ and KCa+ channels are modeled using description of calcium dynamic introduced by Ekeberg and coauthors (1991). The model was tonically activated by NMDA synapse, described by a kinetic model of synaptic transmission. We analyzed the activity of this model and showed that when only one of conductances is calcium-dependent, the cell is not able to react to and recover from external perturbations.
EN
The effect of stimuli predicting danger (DS) and safety (SS) in Pavlovian aversive conditioning on hippocampal local field potentials (LFP) was studied in 25 partially restrained adult male rats (Long-Evans). DS lasting 5 s preceded tail-shock, while SS overlapping DS during DS last 3 s predicted omission of shock. The power spectra of LFPs during trials were analyzed in theta and delta frequency bands. In DS, theta frequency during the last 3 s was lower that in first 2 s. In danger and safety situation theta peak frequency was different for dorsal CA1 activity (5.99 Hz vs. 6.86 Hz, respectively), while delta peak frequency was different for ventral CA1 (1.56 Hz vs. 1.07 Hz) for the last 3 s of trial. Differences in theta frequency in danger and safety situation may reflect differences in sensory processing during induced emotional states and/or related differences in motor behavior.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.