Aluminum and its reinforced type with glass fiber composite foams were produced by powder sintering process using spherical carbamide particles as a space holder. The foams with 40-60 vol.% porosity fractions were successfully produced after water leaching and sintering methods. Compression test was performed on both of the foam samples for comparing the compressive properties and energy absorption behavior of them. The composite foam samples with glass fiber reinforcement showed higher compressive strength than the parent material foam.
Glass fiber-reinforced aluminum foam and its modified forms, using 1 and 3 wt.% of Cu, were produced by powder sintering process, using spherical carbamide particles as space holders. The foams with 40 and 60 vol.% porosity fractions were successfully produced after water leaching and sintering procedures. Compression test was performed on foam samples to compare both, the compressive properties and energy absorption behavior of them. The composite foam samples with Cu modification have shown a higher compressive strength than the parent material foam. The average plateau stress and energy absorption capacity of foams produced in this study, achieved via utilizing 3 wt.% Cu, were 7.06 MPa and 3.51 MJ/m³, respectively.
This paper deals with the application of six sigma methodology for optimization of a cardan shaft. The aim of this optimization is to reduce vibration of the drive shaft and consequently improve vibration noise harshness of the vehicle. The six sigma methodology has been applied to a light truck, which has received excessive vibration and noise complaints. The define-measure-analyze-improve-control approach has been followed to enhance the vibration noise harshness statistics. The result shows that all expected vibration noise harshness performance targets have been dramatically improved when compared to the initial values. As a conclusion, the case study on a light truck is a useful reference to improve vehicle performance for vibration noise harshness.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.