Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 9

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Acta Physica Polonica A
|
2013
|
vol. 123
|
issue 2
333-336
EN
The accurate detection of product defects in the assembly line is crucial to any industry. To achieve accurate detection, extensive studies have been conducted, in particular, on the nondestructive inspection technique. Shoe manufacturers, however, have yet to adopt a reliable defect-detection technique for their total inspection system. The deterioration of strength, one of the most common defects found in the shoe manufacturing process, is caused by the delamination in the bonding stage. Inadequate bonding between midsole and insole, the most serious of identified defects, has so far been detected only by cutting a sample shoe and examining it for its strength. For this study, the researcher tested the validity of some nondestructive techniques employed in inspecting shoes, particularly the infrared thermography technique and non contact air coupled ultrasonic testing, which are used to examine the bonded part of shoes made from ethylene vinyl acetate (EVA), the most common material used in manufacturing shoes. The study has thus confirmed the feasibility of applying a total inspection and nondestructive inspection technique to shoe inspection.
Acta Physica Polonica A
|
2009
|
vol. 115
|
issue 6
1078-1080
EN
X-ray imaging technology is a useful and leading medical diagnostic tool for health care professionals to diagnose disease in human body. Carbon nanotube based X-ray source, which we have developed in this study, could be also useful and supply integrated diagnostic X-ray imaging tool in diagnosis. Conventionally, thermionic type of tungsten filament X-ray tube is widely employed in the field of biomedical and industrial application fields. However, intrinsic problems, such as poor emission efficiency, low imaging resolution, and high electrical energy consumption etc., may cause the limitation of using the X-ray tube. To fulfill the current market requirement, specifically for medical diagnostic field, we have developed rather a portable and compact carbon nanotube based X-ray device in which microfocus high imaging resolution can be feasible.
EN
During compression molding of glass fiber reinforced plastic composites, annealing and quenching experiment is conducted by changing pre-heating and cooling method. As results, major cause of unevenness that affects waviness profile (winding) is the shrinkage of matrix during holding and cooling process. Waviness profile of the surface on molding in glass fiber reinforced plastic composites will be lower when holding pressure load is higher, mold temperature is lower during demolding, and cooling rate is slower. In addition, surface roughness of moldings is depending on holding pressure load compared with mold temperature. According to molding condition of glass fiber reinforced plastic composites, waviness profile of surface can be quantitatively estimated using the proposed equation.
EN
The structural and optical properties of the ZnO and Zn_{0.99}O:Eu³⁺ powders synthesized by the hydrothermal method at two different temperatures (150°C and 250°C) were studied. The ZnO and Zn_{0.99}O:0.01Eu³⁺ powders synthesized at 150 and 250°C showed rod- and flower-like morphologies, respectively. The as-synthesized and annealed ZnO and Zn_{0.99}O:0.01Eu³⁺ powders formed the wurtzite crystal structure and P6₃mc space group. The crystallite size of the as-synthesized and annealed ZnO powders increased by the incorporation of Eu³⁺. The photoluminescence properties of annealed Zn_{0.99}O:0.01Eu³⁺ powders were substantially improved by controlling the synthesis temperature. The annealed Zn_{0.99}O:0.01Eu³⁺ powders synthesized at 250°C displayed much stronger emission intensity than those at 150°C.
EN
The purpose of this study was to determine the effect of calcium (Ca) on the surface characteristics and physical properties of magnesium-calcium alloys after anodization. A novel binary alloy Mg-xCa (in which x=0.5, 1, or 5 wt.%) was cast by combining magnesium (99.9%) and calcium (99.9%) in an argon gas (99.99%) atmosphere. A magnesium alloy rod having a diameter of 15 mm was cut into discs, each 2 mm thick. The specimens were subjected to anodic oxidation at 120 V for 15 minutes at room temperature in an electrolyte solution consisting of calcium gluconate, sodium hexametaphosphate, and sodium hydroxide. Surface and cross-sectional morphological changes were observed using scanning electron microscopy, and the microstructures and phases were detected by means of X-ray diffraction. Hardness and surface roughness were assessed by means of a Vickers hardness tester and a surface roughness meter, respectively. The results show that the physical properties of these magnesium-calcium alloys have been improved, because it was possible to control the dissolution rate according to the amount of calcium added.
EN
The effect of localized electric field (F) was investigated in the type-II InAs/GaAsSb/GaAs structures. To compare type-I to type-II, two types of samples with different Sb contents was grown by molecular beam epitaxy, whose Sb contents are 3% (type-I) and 16% (type-II), respectively. In the both samples, we performed excitation power dependent-photoreflectance at 10 K and the result showed that the period of the Franz-Keldysh oscillation, revealed above the band gap (E_{g}) of GaAs, was broadened in the only type-II system, which means that F was also increased because it is proportional to the period of the Franz-Keldysh oscillation while the period of the Franz-Keldysh oscillations stayed unchanged in type-I system. This phenomenon is explained by that the F was affected by the band bending effect caused by the spatially separated photo-excited carriers in the interface between GaAsSb and GaAs. The F changed linearly as a function of square root of excitation power as expected for the F. Moreover, F was calculated using fast Fourier transform method for a qualitative analysis, which is in a good agreement with the theory of triangular well approximation.
EN
Multi-stacked InAs QDs embedded in ten periods of GaAs/In_{0.1}Ga_{0.9}As strained layers were grown by MBE and their optical properties were investigated by using PL spectroscopy. For the QDs embedded in ten periods of GaAs/In_{0.1}Ga_{0.9}As strained layers, the PL intensity is enhanced about 4.7 times and a narrower FWHM of 26 meV is observed compared to those of the conventional multi-stacked QDs. The PL spectra of the InAs QDs show blue-shifts of about 50 meV with increasing annealing temperature up to 850°C. At annealing temperature of 600°C, the FWHM of the PL peak is reduced to 16 meV and PL intensity is enhanced compared to those of the as-grown sample, which indicates improvement of size uniformity and crystal quality of the QDs.
EN
The influence of InAs coverage on the formation of self-assembled quantum dots grown by molecular-beam epitaxy was investigated by atomic force microscopy and photoluminescence measurements. As the InAs coverage increased from 2.0 to 3.0 monolayers, the quantum dot density decreased from 1.1 × 10^{11} to 1.36 × 10^{10} cm^{-2}. This result could be attributed to the coalescence of neighboring small InAs quantum dots resulting in the formation of much larger InAs quantum dots with lower quantum dot density. Atomic force microscopy results revealed that as the InAs quantum dot coverage increased, the transition of size distribution of InAs quantum dots from single-modal to multimodal occurred. The temperature-dependent photoluminescence spectra showed that the photoluminescence spectra red shifted and the photoluminescence peak intensity decreased as the InAs coverage increased. The thermal activation energy was strongly dependent on the InAs coverage, and for InAs quantum dots with 3.0 ML thick InAs coverage, this energy was estimated to be 147 meV.
EN
The objective of this study was to evaluate the biocompatibility of studied binary magnesium-calcium (Mg-Ca) alloys for biodegradable intraosseous implants. Mg is necessary for health and is a non-toxic biodegradable material that decomposes naturally in the body. Nevertheless, Mg has been implicated in problems including diminished physical properties and corrosion resistance when degradation is too rapid prior to bone healing. This study has explored the effect of Ca on the corrosion resistance and biological evaluation after anodizing treatment with different contents of Ca alloy. Binary Mg-0.5Ca, Mg-1Ca and Mg-5Ca alloys were prepared by the casting method under an argon atmosphere and cut into disc-shaped pieces. Pure Mg alloy was used as the control. Anodic oxidation was performed for 15 minutes at a voltage of 120 V using an electrolyte solution containing Ca gluconate, sodium hexametaphosphate, and sodium hydroxide at room temperature. Corrosion resistance was analyzed using a corrosion tester. After a hydrogen evolution test, the surface pattern and phase changes were observed on a scanning electron microscop (SEM) and energy dispersive spectroscop (EDS). Microscopic evaluation of the adhesion and cell biological functions of Mg was conducted by observing the response of human fetal osteoblastic 1.19 cells with regard to changes in surface film properties, depending on the amount of Ca. Our results support the view that in Mg-xCa alloys (x=0.5, 1, 5 wt.%) treated using anodic oxidation, the increasing Ca content controls the rate of decomposition and improves corrosion resistance.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.