Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We apply perturbation theory and cyclic spin permutation formalism to study the lowest energy states of the infinite-repulsion Hubbard model on n-leg ladders with alternating values of one-site energies α_{i} for neighboring rungs. We establish the "ferromagnetic" character of ladder ground-state at electron densities in the interval 1 - (2n)¯¹ ≤ ρ ≤ 1 and sufficiently large alternation of one-site energies of neighbor rungs of the ladder. We also show the stability of this state against the small deviations of the values of α_{i} in contrast to the case of two-leg ladder formed by weakly interacting neighbor rungs with equal one-site energies.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.