The ^1H NMR relaxometry in combination with water proton spin-spin relaxation time measurements and rheometry have been applied to study the ionic gelation of 1% w/w aqueous low methoxyl pectin solution induced by divalent Ca^{2+} cations from a calcium chloride solution. The model-free approach to the analysis of ^1H NMR relaxometry data has been used to separate the information on the static (β) and dynamic (〈τ_c〉) behaviour of the systems tested. The ^1H NMR results confirm that the average mobility of both water and the pectin molecules is largely dependent on the concentration of the cross-linking agent. The character of this dependency (β,〈τ_c〉 and T_2 vs. CaCl_2 concentration) is consistent with the two-stage gelation process of low methoxyl pectin, in which the formation of strongly linked dimer associations (in the range of 0-2.5 mM CaCl_2) is followed by the appearance of weak inter-dimer aggregations (for CaCl_2 ≥ 3.5 mM). The presence of the weak gel structure for the sample with 3.5 mM CaCl_2 has been confirmed by rheological measurements. Apart from that, the T_1 and T_2 relaxation times have been found to be highly sensitive to the syneresis phenomenon, which can be useful to monitor the low methoxyl pectin gel network stability.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.