Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of this study is to investigate the interaction of ZnO/SiO₂ particles between the chloroprene rubber and its effect on the cure characteristics and mechanical properties of the cold vulcanizing adhesives. Curing efficiency and mechanical properties of ZnO/SiO₂ filled adhesives were compared with SiO₂ filled adhesives. ZnO nanoparticles were bounded to SiO₂ spherical nanoparticles by hydrolysis and condensation process. The morphology and elemental content of ZnO/SiO₂ particles were investigated by scanning electron microscopy and energy dispersive spectroscopy. The ZnO/SiO₂ particles were then blended with chloroprene rubber as accelerator during the vulcanization process. Cure characteristics, which are scorch time (t_{s2}), cure time (t_{c90}), maximum torque (M_{H}) and minimum torque (M_{L}) of the rubber compounds were determined at 190°C with a moving die rheometer. The fabric conveyor belt was used for measuring adhesive strength of the adhesives. The fabric conveyor belt was used for measuring adhesive strength of the adhesives. Application of the cold vulcanizing adhesives to the fabric conveyor belt was carried out at three different times (4, 8, and 24 h), 25°C temperature and 0.3 kg/cm² pressure. The results showed that ZnO/SiO₂ particles provided a higher adhesive strength than silica in the 4, 8, and 24 h of adhesion. ZnO/SiO₂ filled rubber blends gained superior vulcanization characteristics by the increasing cure rate index with the reducing cure time and scorch time. It has been concluded that ZnO/SiO₂ particles can be used as a new curing accelerator and simultaneously reinforcing filler.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.