The optical spectra of semiconductor microcrystals grown in transparent matrix of oxide glass are investigated. The size of microcrystals was varied in a controlled manner from a few tens to a few hundreds of angstroms. The microcrystal embedded in wide gap matrix represents three-dimensional potential well for electrons, holes and excitons. The optical properties of such zero-dimensional semiconductor structures are shown to be governed by the structure of energy spectra of confined electron-hole pairs. The phenomenon of the microcrystals ionization at interband optical excitation is observed. The Auger process in microcrystals containing two nonequilibrium electron-hole pairs is proposed to be responsible for this effect. The experimental dependencies of the ionization rate as a function of excitation intensity and the microcrystal size are in a good agreement with the theoretical predictions of the Auger recombiantion model.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.