Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Long QT syndrome (LQTS) is a hereditary disease with significant mortality, which might be reduced with appropriate management. This cardiac disorder is regarded as rare, but its prevalence remains unknown. The clinical course of LQTS is variable and syncope is a common first manifestation of LQTS. Therefore in each patient after syncope an ECG should be carried out. However, there is no universal QT value applying to all patients (especially infants and children), because it varies depending on age and sex. Genetic testing can be of great importance for the management of families with LQTS and early identification of patient relatives at risk of developing disease. We aimed to show that a very important part of treatment is not only pharmacotherapy, especially beta-blockers, but change of lifestyle plays a significant role.
EN
Long QT syndrome (LQTS) is a hereditary disease with significant mortality, which might be reduced with appropriate management. This cardiac disorder is regarded as rare, but its prevalence remains unknown. The clinical course of LQTS is variable and syncope is a common first manifestation of LQTS. Therefore in each patient after syncope an ECG should be carried out. However, there is no universal QT value applying to all patients (especially infants and children), because it varies depending on age and sex. Genetic testing can be of great importance for the management of families with LQTS and early identification of patient relatives at risk of developing disease. We aimed to show that a very important part of treatment is not only pharmacotherapy, especially beta-blockers, but change of lifestyle plays a significant role.
EN
Escherichia coli small heat shock proteins IbpA and IbpB are molecular chaperones that bind denatured proteins and facilitate their subsequent refolding by the ATP-dependent chaperones DnaK/DnaJ/GrpE and ClpB. In vivo, the lack of IbpA and IbpB proteins results in increased protein aggregation under severe heat stress or delayed removal of aggregated proteins at recovery temperatures. In this report we followed the appearance and removal of aggregated alcohol dehydrogenase, AdhE, in E. coli submitted to heat stress in the presence of oxygen. During prolonged incubation of cells at 50°C, when AdhE was progressively inactivated, we initially observed aggregation of AdhE and thereafter removal of aggregated AdhE. In contrast to previous studies, the lack of IbpA and IbpB did not influence the formation and removal of AdhE aggregates. However, in ΔibpAB cells AdhE was inactivated and oxidized faster than in wild type strain. Our results demonstrate that IbpA and IbpB protected AdhE against thermal and oxidative inactivation, providing that the enzyme remained soluble. IbpA and IbpB were dispensable for the processing of irreversibly damaged and aggregated AdhE.
EN
In this report a case of aortopulmonary window (APW) diagnosed at 26 hbd is presented. APW supported the pulmonary circulation in neonate afflicted with pulmonary stenosis. To our knowledge, this is the first report in the literature referring to observing their coincidence in fetal life.
EN
Escherichia coli small heat shock proteins, IbpA/B, function as molecular chaperones and protect misfolded proteins against irreversible aggregation. IbpA/B are induced during overproduction of recombinant proteins and bind to inclusion bodies in E. coli cells. We investigated the effect of ΔibpA/B mutation on formation of inclusion bodies and biological activity of enzymes sequestered in the aggregates in E. coli cells. Using three different recombinant proteins: Cro-β-galactosidase, β-lactamase and rat rHtrA1 we demonstrated that deletion of the ibpA/B operon did not affect the level of produced inclusion bodies. However, in aggregates containing IbpA/B a higher enzymatic activity was detected than in the IbpA/B-deficient inclusion bodies. These results confirm that IbpA/B protect misfolded proteins from inactivation in vivo.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.