Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Two samples containing InGaN quantum wells have been grown by metal-organic vapor phase epitaxy on high pressure grown monocrystalline GaN (0001). Different growth temperatures have been used to grow the wells and the barriers. In one of the samples, a low temperature GaN layer (730°C) has been grown on every quantum well before rising the temperature to standard values (900°C). The samples have been investigated by transmission electron microscopy and X-ray diffraction. Photoluminescence spectra have been measured as well. The influence of the LT-GaN has been investigated in regard to its influence on the structural and compositional quality of the sample.
EN
We report on the investigation of the surface leakage current for InAs_{1-x}Sb_x (x=0.09) high operation temperature photodiode grown on GaAs substrate in accelerated short-term stability test. The electrochemical passivation technique was proposed to modify the mesa sidewalls properties and obtain anodic sulphur coating covered by SU-8 negative photoresist. The electrical behavior of sulphur anodic film, SU-8 photoresist, and unpassivated devices was compared for devices in variable area diode array test. The surface resistivity for anodic sulphur film, SU-8 and unpassivated devices are equal to 1080, 226, 10200 kΩ cm, respectively, at 150 K and 1340, 429, 2870 kΩ cm, respectively, at 150 K after an exposure of 20 h to atmosphere at 373 K. The Auger recombination process was evaluated as the main mechanism of diffusion current in HOT devices.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.