Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The plasma waves in gated two-dimensional electron gas have a linear dispersion law, similar to the sound waves. The transistor channel is acting as a resonator cavity for the plasma waves, which can reach frequencies in the THz range for a sufficiently short gate length field effect transistors. A variety of possible applications of field effect transistor operating as a THz device were suggested. In particular, it was shown that the nonlinear properties of plasma oscillations can be utilized for THz tunable detectors. During the last few years THz detection related to plasma wave instabilities in nanometer size field effect transistors was demonstrated experimentally. In this work we review our recent experimental results on the resonant plasma wave detection at cryogenic and room temperatures.
EN
Detection of 100 GHz and 285 GHz electromagnetic radiation by GaAs/AlGaAs field effect transistors with the gate length of 150 nm was investigated at 300 K as a function of the angleαbetween the direction of linear polarization of the radiation and the symmetry axis of the field effect transistors. The angular dependence of the detected signal was found to be Acos²(α-α₀)+C. A response of the transistor chip (including bonding wires and the substrate) to the radiation was numerically simulated. Calculations confirmed experimentally observed dependences and allowed to investigate the role of bonding wires and contact pads in coupling of the radiation to the transistor channel.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.