Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
High-resolution X-ray diffractometer was used to study structural quality, lattice parameters and misfit strain in p-ZnTe/n-CdTe heterojunctions grown by the molecular-beam epitaxy technique on two different (001)-oriented substrates of GaAs and CdTe. The X-ray diffractometer results indicate that the CdTe layers, grown on lattice mismatched GaAs substrate, are partially relaxed, by the formation of misfit dislocations at the interface, and display residual vertical strain of the order of 10^{-4}. The presence of threading dislocations in the layers effectively limits the efficiency of solar energy conversion in the investigated heterojunctions. Homoepitaxially grown CdTe layers, of much better structural quality, display unexpected compressive strain in the layers and the relaxed lattice parameter larger than that of the substrate. Possible reasons for the formation of that unusual strain are discussed.
EN
High-quality layers of the (Ga,Mn)(Bi,As) quaternary compound semiconductor have been grown by the low-temperature molecular-beam epitaxy technique. An effect of Bi incorporation into the (Ga,Mn)As ferromagnetic semiconductor and the post-growth annealing treatment of the layers have been investigated through examination of their magnetic and magneto-transport properties. Significant enhancement of the planar Hall effect magnitude upon addition of Bi into the layers is interpreted as a result of increased spin-orbit coupling in the (Ga,Mn)(Bi,As) layers.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.