Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Noise Anisotropy in YBa_2Cu_3O_{7-δ} Thin Films

100%
EN
Anisotropy of voltage noise in YBa_2Cu_3O_{7-δ} thin films was investigated using (103)/(013) oriented films. Normalized noise in the normal state does not depend on the direction of current flow, while in the superconducting state the noise is anisotropic. The difference stems from different origins of noise. Normal state noise is due to random motion of charge carriers while in the superconducting state it arises from fluctuations of density and/or velocity of flux vortices.
EN
Quasi-Josephson effect produced by a coherent vortex motion in the horizontal part of the laser-performedΠ-shaped channel of a YBa_2Cu_3O_{7-δ} superconducting bridge was investigated by means of electric transport measurements. We observed that in our structures, in a limited range of temperatures and bias currents, the vortices were confined in the channel only and moved coherently with the velocity of 3×10^4 m/s. The corresponding current-voltage characteristics of the bridge exhibited Josephson-like voltage steps with the amplitude dependent on temperature, but independent of the bias current.
EN
A mixed state in dc-biased thin films of II-type superconductors realizes the Abrikosov magnetic vortices/antivortices, which are the result of the current-self magnetic field penetration into the film at temperatures lower than its critical temperature T_{c}. A nucleation of vortices/antivortices at the superconducting film's edges, their motion perpendicular to the direction of biasing current, and the annihilation in the film's center originates from a current dissipation in the superconductor and expresses itself in experiments as a dc voltage. This work reports on the results of simulation of current density in a 50 μm wide, 100 μm long, and 0.3 μm thick YBa_2Cu_3O_{7 - x} microbridges containing Π-shaped 5 μm wide single channel of easy vortex motion fabricated by means of laser-writing technique. Analyzing a two-dimensional-net of resistors and assuming that, due to the Meissner-Ochsenfeld effect, the magnetic flux penetration into superconducting film is nonlinear, we demonstrate that presence of a Π-shaped channel causes a non-homogeneous distribution of current in the microbridge.
EN
A current-self-induced magnetic field H_{j}, such that H_{c1} < H_{j} < H_{c2} at T < T_{c}, penetrates a thin-film, type-II superconductor forming the Abrikosov magnetic vortex-antivortex pairs in the film's areas of weakest superconductivity. Our atomic force microscopy and scanning tunneling microscopy images confirm that in 50 μm wide, 100 μm long and 0.3 μm thick YBa_2Cu_3O_{7 - x} superconducting devices magnetic flux penetrates first into a 5 μm wide, Π-shaped and partially deoxygenated (x ≈ 0.2) channel for easy vortex motion. When the Lorentz force overcomes pinning force in the channel, the flux starts to move and its drift dissipates energy inducing dc voltage. This work reports on the density of coherently moving vortices along the channel vs. temperature in range from 0.93T_{c} to 0.97T_{c}. Our simulations show that the vortex density vs. temperature dependence extracted from I-V measurements of our devices follows the temperature dependence of magnetic field penetration depth and the coherence length of the superconductor.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.